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We analyze ther →` asymptotic decay of the total correlation functionhsrd for a fluid composed of
particles interacting via aspointd Yukawa pair potential. Such a potential provides a simple model for dusty
plasmas. The asymptotic decay is determined by the poles of the liquid structure factor in the complex plane.
We use the hypernetted-chain closure to the Ornstein-Zernike equation to determine the line in the phase
diagram, well removed from the freezing transition line, where crossover occurs in the ultimate decay ofhsrd,
from monotonic to damped oscillatory. We show thatsid crossover takes place via the same mechanism
scoalescence of imaginary polesd as in the classical one-component plasma and in other models of Coulomb
fluids andsii d leading-order pole contributions provide an accurate description ofhsrd at intermediate distances
r as well as at long range.
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The Yukawa, or screened Coulomb, potential is often used
as a model for fluids composed of charged particles im-
mersed in a uniform neutralizing background. We define the
pair potential as

fsrd =
e exps− lrd

lr
, s1d

wherer is the distance between the centers of a pair of par-
ticles, l is the inverse decay lengthsscreening parameterd,
and e.0 characterizes the strength of the potential. A fluid
composed of particles interacting via this potential exhibits
behavior similar to that of the one-component classical
plasmasOCPd f1,2g, in which fsrd~1/r. The point Yukawa
pair potential also corresponds to a limiting case of the well
established Derjaguin, Landau, Verwey and Overbeek
sDLVOd model for aqueous suspensions of charged colloidal
particles f3–5g, where the hard-core part of the colloid-
colloid effective pair potential is neglected.

The Yukawa pair potential is also widely employed in
theoretical studies of the so-called dusty plasmas. These are
multicomponent plasmas consisting of chargedsdustd par-
ticles, electrons, and ions, as well as neutral atoms or mol-
ecules, which are found in a variety of environments, from
the interstellar medium to plasma etching processes. De-
pending on their size, the dust grains can attain a large nega-
tive charge of 1000e−10 000e for particles of size 1
−10 mm f6g; the charge is generally negative and is deter-
mined by the balance of the absorbed electron and ion fluxes.
Since the dust component of the plasma can be videoed and
tracked directly, dusty plasmas provide a valuable system for
studying both equilibrium phenomena and collective pro-
cesses such as transport in a fluidf6,7g. In modeling the
dusty plasma, the effective potential between two dust par-
ticles of chargeQ is taken to bef8,9g

fsrd =
Q2

4pe0r
exps− kDrd, s2d

wherekD
−1 is the Debye length of the background plasma. The

thermodynamics of the system can then be characterized by
the dimensionless parameters

k = kDa and G =
Q2

4pe0akBT
, s3d

where a;f3/s4prdg1/3 is the Wigner-Seitz radius, i.e., the
mean interparticle distance, which is determined by the av-
erage fluid number densityr. G is the couplingsplasmad
parameterf9g. Note that unlike the OCP, whose properties
depend solely onG, two parameters are required in this case.

Because of its relevance for colloidal fluids and the grow-
ing importance of studies of dusty plasmas, not to mention
the appealing mathematical properties of the Yukawa poten-
tial f10g, much is established for this model fluid. The phase
diagram has been determined in a number of simulation stud-
ies f11–16g. At small values ofG the liquid state equilibrium
structure is well approximated by the hypernetted-chain
sHNCd closure to the Ornstein-ZernikesOZd equation
f17–19g, as one would expect from studies of the OCPf1g.
For larger values ofG, a modified HNC based upon a rescal-
ing of the bridge function for the OCPf20g yields results
indistinguishable from Monte CarlosMCd simulation data
f17g. At small values ofk the Yukawa fluid freezes into a bcc
crystal upon increasingG, as in the OCP. For sufficiently
largek increasingG can lead to freezing directly into a fcc
crystal. A portion of the phase diagram from Ref.f16g is
shown in Fig. 1f21g.

In the present work we analyze the asymptotic decay of
the pair correlations in the uniform fluid and we find that at
couplingsG below freezing, there is a crossover in the form
of the asymptotic decay,r →`, of hsrd, the total correlation
function, from monotonic to damped oscillatory, that is simi-
lar to the crossover found nearGK=1.12 in the HNC treat-
ment of the OCPf22g. We map out the crossover line in the
sk ,Gd phase diagram; see Fig. 1.

Our starting point is the OZ equationf19g, which relates
hsrd to csrd, the pair direct correlation function. In Fourier
space the OZ equation can be written as

ĥsqd =
ĉsqd

1 − rĉsqd
. s4d

Here f̂sqd denotes the three-dimensional Fourier transform of
the spherically symmetric functionfsrd. We choose to imple-*Electronic address: Andrew.Archer@bristol.ac.uk
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ment the HNC closure which sets the bridge functionBsrd
=0. For the present Yukawa fluid, particularly at the densities
in the neighborhood of the crossover line, the HNC accounts
very well for the structure of the uniform fluid, yielding pair
correlation functions almost indistinguishable from simula-
tion results. Thus we shall use the HNC results to determine
the location of the crossover line. First, in Fig. 2sad we dis-
play some typical results forgsrd=1+hsrd. These are for a
fixed temperatureT* ;kBT/e=1 and for the densitiesrl−3

=0.1, 0.45, 2.5, 10, and 40. At this temperature, we shall find
that the crossover occurs forrl−3.0.47. We also display
some constantNVT MC results for the first three of these
densities; forrl−3=0.1 and 0.45 we used 300 particles with
25 000 splus 10 000 equilibrationd trial moves per particle.
The maximum displacement of the particles was chosen so
that approximately 50% of attempted moves were accepted.
For the MC simulations atrl−3=2.5 we used 2000 particles.
We see that as the density is increased the asymptotic decay
switches from monotonic to damped oscillatory. This cross-
over represents the evolution of the system from a weakly
coupled state where the particles do not order strongly, to a
state where they are more closely packed and the correlations
become more hard-sphere-like, although for all the densities
displayed, the amplitude of thesoscillatoryd structure ingsrd
remains quite small.

The asymptotic decay ofhsrd can be obtainedf22,23g
from the OZ equation using the inverse Fourier transform of
Eq. s4d:

rhsrd =
1

4p2i
E

−`

`

dq qexpsiqrd
ĉsqd

1 − rĉsqd
, s5d

which can be transformed into a semicircular contour inte-
gral in the upper half of the complex plane. Its value is

determined by the poles ofĥsqd enclosed. These occur at
qn= ±a1+ ia0, whereqn is the solution to the equation

1 − rĉsqnd = 0. s6d

As a result,hsrd can be obtained as the sumf22,23g

rhsrd =
1

2p
o
n

Rn expsiqnrd, s7d

where qn is the nth pole andRn is the residue ofqĉsqd
/ f1−rĉsqdg at qn. Clearly the asymptotic behavior ofhsrd is
determined by the polessd with the smallest imaginary part,
a0. If this pole is purely imaginary,qn= ia0, then rhsrd
,A exps−a0rd, for r →`, where A is a sreald amplitude
f23g. Alternatively, if the conjugate pairqn= ±a1+ iã0

has the smallest imaginary part thenrhsrd, Ã exps−ã0rd
3cossa1r −ud. The amplitudesA and Ã and the phaseu can
be calculated from the residuesf23g. Whether a pure imagi-
nary or complex pole dominates depends on the thermody-
namic state point.

In order to calculate the poles, we use the separation
method introduced in Ref.f22g. Owing to the particular form
of the decay of the Yukawa pair potential, the asymptotic
behavior ofcsrd must be treated separately so as to ensure
the convergence of the integrals which determine the poles
f22g. The asymptotic decayr →` of the direct correlation
function is given bycsrd,−bfsrd, which for the Yukawa
potential impliescsrd,−exps−lrd / sT*lrd. It is convenient
to define a short-ranged direct correlation functioncsrsrd by
subtracting the long-ranged Yukawa decay. The Fourier
transform ofcsrd is then

ĉsqd ; ĉsrsqd −
4p

lT*

1

sq2 + l2d
. s8d

Making this division, we follow Ref.f22g and calculate the
poles by separating Eq.s6d into its real and imaginary parts
and solving numerically using a Newton-Raphson procedure.
However, in general the integrals involved converge only for
complexq such that Imfqg,2a0, wherea0 is the imaginary
part of the leading order pole, i.e., that with the smallest
value ofa0. In practice, the other poles generally lie outside
this region of convergence and only the leading-order pole
can be determined. We also use this separation ofcsrd to
calculate the amplitude and phase ofhsrd from the residues
of the poles, assuming these to be simplef22g.

Using our HNC results forcsrd we were able to calculate
the contributions tohsrd from the leading order polessd for
various points in the phase diagram. In Fig. 2sbd we display
the HNC result forhsrd at the state pointrl−3=0.1 andT*

=1, together with the contribution from the leading-order
spurely imaginaryd pole. This state point lies on the mono-
tonic side of the crossover line. In Fig. 2scd we display the
HNC result forhsrd at rl−3=0.45 andT* =1 snear the cross-
over line, still on the monotonic sided, together with the con-
tributions from the two leading-orderspurely imaginaryd
poles. In Fig. 2sdd we display the HNC result forhsrd, for the
state pointrl−3=40 andT* =1, which exhibits damped os-
cillatory asymptotic decay, together with the contribution

FIG. 1. Crossover linesdiamonds joined by a solid lined sepa-
rating the region of thesk ,Gd plane where the asymptotic decay of
hsrd is damped oscillatory from that where it is monotonic. In the
OCP, corresponding tok=0, crossover occurs atGK=1.21f22g. We
also display the fluid-solids1d and solid-solids3d phase bound-
aries given in Ref.f16g. In the inset we display the crossover line in
the sr ,Td plane. Note that the freezing transition present at low
T* ;kBT/e is not visible on this scale.
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from the leading-order conjugate pair of complex poles. Note
that the contribution from this pair of poles approximates
accurately the fullhsrd for lr .0.2.

In Fig. 3 we display the leading-order poles calculated
along the isothermT* =1. At low densities the pole dominat-
ing the decay ofhsrd is purely imaginary. However, as the
density is increased, this pole moves up the imaginary axis,
and at a densityrl−3.0.47 it meets a secondsdescendingd
purely imaginary pole. This second pole could only be deter-
mined once it had descended into the region of convergence.
These poles coalesce and form a conjugate pair of complex
poles which then move away from the imaginary axis as the
density is increased further. This coalescence of two purely
imaginary poles to form a pair of complex poles as one
moves along a path of increasing density in the phase dia-
gram results in a crossover in the asymptotic decay ofhsrd
from monotonic to damped oscillatory. The mechanism of
poles coalescing and moving off the imaginary axis is the

same as that found in the OCP nearGK=1.12 f22g. It is
equivalent to that found in studies of charge correlations in
the restricted primitive modelsRPMd of binary ionic fluids
f24g and in screened versions of the RPMf25g. Kirkwood
f26g was the first to describe the mechanism, so the line in
the phase diagram at which crossover occurs could be termed
the Kirkwood line following earlier terminologyf22,24,25g.

In Fig. 1 we display the location of the crossoversKirk-
woodd line in the phase diagram. This linessee insetd was
determined by finding the density at which the imaginary
poles coalesce for a series of isotherms, i.e., fixedT* . By
converting from the variablessrl−3,T*d to sk ,Gd the cross-
over line shown in the main figure was obtained. We empha-
size that this line lies far below the fluid-solid transition line,
as might have been expected from the observation that in the
OCP freezing is known to occur forG.172, whereas cross-
over from monotonic to oscillatory decay of correlations oc-
curs nearGK=1.12. For the values ofk considered here, 0

FIG. 2. Pair correlation functions for a reduced temperatureT* =1. sad gsrd calculated for a range of densities; the lines denote HNC
results and the symbols MC resultsssee legendd. Crossover occurs atrl−3.0.47 for this temperature. For densities larger than this the decay
of gsrd is damped oscillatory.sbd Comparison between the full HNC result forhsrd ssolid lined and the contribution from the leading-order
single imaginary polesdashed lined for rl−3=0.1. scd The full HNC result for hsrd ssolid lined and the contributions from the two
leading-order purely imaginary polessdotted and dashed linesd and their sumsdot-dashed lined, for rl−3=0.45.sdd The full HNC result for
hsrd ssolid lined and the contribution from the leading-order conjugate pair of complex polessdotted lined, giving damped oscillatory decay,
for rl−3=40. The insets inscd and sdd show ln fr uhsrdug versuslr.
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øk&5, crossover occurs forG in the range 1&G&5, i.e.,
the coupling parameter is rather weak and we expect the
HNC to perform rather well; see also Fig. 2sad for the com-
parison with MC results. Of course, one could attempt to
improve upon the HNC by incorporating an approximate
bridge functionBsrd, along the lines of Refs.f17,18g. How-
ever, we do not expect significant changes in the location of
the crossover line; the poles should not be sensitive to details
of the particular closuref22g. One could also attempt to ex-
tract the poles and determine the crossover line using accu-
rate simulation data forgsrd following the method applied in
Ref. f27g for a truncated Lennard-Jones fluid.

In summary, we have shown that the form of the
asymptotic decay of the total correlation functionhsrd in a
Yukawa fluid crosses over from monotonic at small coupling
parameterG to damped oscillatory at larger values via the
same mechanism as in the OCP. We find that leading-order
asymptotics provide as accurate a description of pair corre-
lations at intermediate range in the Yukawa fluid as they do
for other model fluidsf22–25,27g. This observation might
prove useful in further applications of the Yukawa model to
dusty plasmas.
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FIG. 3. The leading-order polesssmallest imaginary part,a0d
along the isothermT* =1 for increasingrl−3. Only poles with posi-
tive a1 are shown; complex poles occur in conjugate pairs. At low
densities the leading order poles3d is purely imaginary. As the
density is increased a second purely imaginary poles1d descends
and, at a densityrl−3.0.47, the two purely imaginary poles coa-
lesce to form a pair of complex polesshd. At this sKirkwoodd point
the asymptotic decay ofhsrd crosses over from monotonic to
damped oscillatory.
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