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Asymptotic decay of pair correlations in a Yukawa fluid
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We analyze thea — o asymptotic decay of the total correlation functibfr) for a fluid composed of
particles interacting via goint) Yukawa pair potential. Such a potential provides a simple model for dusty
plasmas. The asymptotic decay is determined by the poles of the liquid structure factor in the complex plane.
We use the hypernetted-chain closure to the Ornstein-Zernike equation to determine the line in the phase
diagram, well removed from the freezing transition line, where crossover occurs in the ultimate de¢y of
from monotonic to damped oscillatory. We show th{t crossover takes place via the same mechanism
(coalescence of imaginary po)jess in the classical one-component plasma and in other models of Coulomb
fluids and(ii) leading-order pole contributions provide an accurate descriptitirpfat intermediate distances
r as well as at long range.
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The Yukawa, or screened Coulomb, potential is often used Q?
as a model for fluids composed of charged particles im- k=kpa and F:m, 3
mersed in a uniform neutralizing background. We define the 0
pair potential as wherea=[3/(4mp)]*® is the Wigner-Seitz radius, i.e., the
() = e exp(=Ar) (1) mean interparticle distance, which is determined by the av-
T ’ erage fluid number density. I' is the coupling(plasma

wherer is the distance between the centers of a pair of parparametef9]. Note that unlike the OCP, whose properties
ticles, \ is the inverse decay lengifscreening parameter depend solely oilr, two parameters are required in this case.
and e>0 characterizes the strength of the potential. A fluid Because of its relevance for colloidal fluids and the grow-
composed of particles interacting via this potential exhibitsing importance of studies of dusty plasmas, not to mention
behavior similar to that of the one-component classicathe appealing mathematical properties of the Yukawa poten-
plasma(OCP [1,2], in which ¢(r)<1/r. The point Yukawa tial [10], much is established for this model fluid. The phase
pair potential also corresponds to a limiting case of the weldiagram has been determined in a number of simulation stud-
established Derjaguin, Landau, Verwey and Overbeeles[11-16. At small values of the liquid state equilibrium
(DLVO) model for aqueous suspensions of charged colloidagtructure is well approximated by the hypernetted-chain
particles [3-5], where the hard-core part of the colloid- (HNC) closure to the Ornstein-ZernikéOZ) equation
colloid effective pair potential is neglected. [17-19, as one would expect from studies of the OAR
The Yukawa pair potential is also widely employed in For larger values of, a modified HNC based upon a rescal-
theoretical studies of the so-called dusty plasmas. These aieg of the bridge function for the OCR20] yields results
multicomponent plasmas consisting of chargedsd par-  indistinguishable from Monte CarlOMC) simulation data
ticles, electrons, and ions, as well as neutral atoms or mol-17]. At small values ofk the Yukawa fluid freezes into a bcc
ecules, which are found in a variety of environments, fromcrystal upon increasin@’, as in the OCP. For sufficiently
the interstellar medium to plasma etching processes. Ddarge « increasingl’ can lead to freezing directly into a fcc
pending on their size, the dust grains can attain a large negarystal. A portion of the phase diagram from RE£6] is
tive charge of 1008-1000@& for particles of size 1 shown in Fig. 1[21].
—10 um [6]; the charge is generally negative and is deter- | the present work we analyze the asymptotic decay of
mined by the balance of the absorbed electron and ion fluxeghe pair correlations in the uniform fluid and we find that at
Since the dust component of the plasma can be videoed ang,,lingsI" below freezing, there is a crossover in the form
tracked directly, dusty plasmas provide a valuable system fog¢ 1he asymptotic decay,—, of h(r), the total correlation
studying bo;h eqtumbrlumt phen?lrgg;j’i Iand Cg”?Ct'V?h pro'function, from monotonic to damped oscillatory, that is simi-
cesses such as fransport in a - 1 Moceling the tJ_ar to the crossover found ne&iz=1.12 in the HNC treat-

gglztg g;iﬁg%g ?Sigﬁggvg pt))ce){tgngt]lal between two dust pa ment of the OCH22]. We map out the crossover line in the
’ (k,I') phase diagram; see Fig. 1.

2

_ _ Our starting point is the OZ equatidd9], which relates
(1) Amreyr expl-kor), ) h(r) to c(r), the pair direct correlation function. In Fourier
wherek51 is the Debye length of the background plasma. TheSpace the OZ equation can be written as

thermodynamics of the system can then be characterized by

P ()
the dimensionless parameters h(g) = ———

1-pe(q)’ @

Heref(q) denotes the three-dimensional Fourier transform of
*Electronic address: Andrew.Archer@bristol.ac.uk the spherically symmetric functiof{r). We choose to imple-
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\ L determined by the poles dAf(q) enclosed. These occur at
X, solid (fec) :_;#””' an=tay +iay, Whereq, is the solution to the equation

X\\ o ~
1000 solid (bec) RRRvENEpl i 1-pt(g,) =0. (6)
As a result,h(r) can be obtained as the sy@,23

Lot 1 .
i rh(r) =~ Ry expliqy), (7)
n
where ¢, is the nth pole andR, is the residue ofgc(q)
/[1-pt(q)] at g,. Clearly the asymptotic behavior bfr) is
determined by the pols) with the smallest imaginary part,
ap. If this pole is purely imaginaryg,=i«g, then rh(r)

~Aexpi—aqr), for r—o, where A is a (real) amplitude
Monotonic [23]. Alternatively, if the conjugate pairg,=+a;+iag
10_0 10 20 30 40 5.0 has the smallest imaginary part iheh(r)~Aexp(—aor)
K Xcogaqr - 6). The amplitude#A andA and the phasé can
be calculated from the residuga3]. Whether a pure imagi-
nary or complex pole dominates depends on the thermody-

namic state point.

[~ 100

Oscillatory

10

FIG. 1. Crossover linédiamonds joined by a solid linesepa-
rating the region of théx,I") plane where the asymptotic decay of
h(r) is damped oscillatory from that where it is monotonic. In the .
OCP, corresponding te=0, crossover occurs & =1.21[22]. We In O“_jer to Calc,ljlate the polgs, we use the separation
also display the fluid-solid+) and solid-solid(x) phase bound- Method introduced in Ref22]. Owing to the particular form
aries given in Ref[16]. In the inset we display the crossover line in Of the decay of the Yukawa pair potential, the asymptotic
the (p,T) plane. Note that the freezing transition present at lowbehavior ofc(r) must be treated separately so as to ensure
T =kgT/€ is not visible on this scale. the convergence of the integrals which determine the poles

) _ [22]. The asymptotic decay— <o of the direct correlation
ment the HNC closure which sets the bridge functi&in)  function is given byc(r) ~-B¢(r), which for the Yukawa
=0. For the present Yukawa fluid, particularly at the densitieg,otential impliesc(r) ~ —exp(-\r)/(T'Ar). It is convenient
in the neighborhood of the crossover line, the HNC accounts, yefine a short-ranged direct correlation functedfir) by

very We_II for the_structure of t_he_umforr_n fIU|d,y|eId|ng_ pair subtracting the long-ranged Yukawa decay. The Fourier
correlation functions almost indistinguishable from simula- .
gansform ofc(r) is then

tion results. Thus we shall use the HNC results to determin
the location of the crossover line. First, in Figapwe dis- T 1
play some typical results fay(r)=1+h(r). These are for a c@=C)- =5 >-
fixed temperaturd* =kgT/e=1 and for the densitiep\~> AT (@ +0)
=0.1, 0.45, 2.5, 10, and 40. At this temperature, we shall findviaking this division, we follow Ref[22] and calculate the
that the crossover occurs fan"3=0.47. We also display poles by separating E@6) into its real and imaginary parts
some constanNVT MC results for the first three of these and solving numerically using a Newton-Raphson procedure.
densities; forph3=0.1 and 0.45 we used 300 particles with However, in general the integrals involved converge only for
25000 (plus 10 000 equilibrationtrial moves per particle. complexq such that Ifiq] < 2a,, wherea is the imaginary
The maximum displacement of the particles was chosen spart of the leading order pole, i.e., that with the smallest
that approximately 50% of attempted moves were acceptedalue of . In practice, the other poles generally lie outside
For the MC simulations g\ ~3=2.5 we used 2000 particles. this region of convergence and only the leading-order pole
We see that as the density is increased the asymptotic decaygn be determined. We also use this separation(of to
switches from monotonic to damped oscillatory. This crosscalculate the amplitude and phasehtf) from the residues
over represents the evolution of the system from a weaklyf the poles, assuming these to be sin@a].
coupled state where the particles do not order strongly, to a ysing our HNC results foc(r) we were able to calculate
state where they are more closely packed and the correlatioRge contributions tch(r) from the leading order pols) for
become more hard-sphere-like, although for all the densitiegigus points in the phase diagram. In Figh)2we display
displayed, the amplitude of thescillatory structure ing(r)  the HNC result forh(r) at the state poinpA=3=0.1 andT"
remains quite small. , =1, together with the contribution from the leading-order
The asymptotic decay ofi(r) can be obtained22,23 (5 rely imaginary pole. This state point lies on the mono-
from the OZ equation using the inverse Fourier transform ofgpic side of the crossover line. In Fig(c2 we display the

(8)

Eq. (4): HNC result forh(r) at p\~3=0.45 andT" =1 (near the cross-
1 (T . ¢(q) over line, still on the monotonic sigietogether with the con-
rh(r)—4ﬂ2i B dq qexp(lqr)l_pe(q), (5)  tributions from the two leading-ordefpurely imaginary

poles. In Fig. 2d) we display the HNC result fdn(r), for the
which can be transformed into a semicircular contour intesstate pointphA™3=40 andT =1, which exhibits damped os-
gral in the upper half of the complex plane. Its value iscillatory asymptotic decay, together with the contribution
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FIG. 2. Pair correlation functions for a reduced temperaflirel. (a) g(r) calculated for a range of densities; the lines denote HNC
results and the symbols MC resulse legend Crossover occurs ah~3=0.47 for this temperature. For densities larger than this the decay
of g(r) is damped oscillatoryth) Comparison between the full HNC result fofr) (solid line) and the contribution from the leading-order
single imaginary pole(dashed ling for pA=3=0.1. (c) The full HNC result forh(r) (solid line) and the contributions from the two
leading-order purely imaginary polédotted and dashed lineand their sum(dot-dashed ling for pA=3=0.45.(d) The full HNC result for
h(r) (solid line) and the contribution from the leading-order conjugate pair of complex [gotdted ling, giving damped oscillatory decay,

for pA~3=40. The insets iric) and(d) show In[r|h(r)|] versusr.

from the leading-order conjugate pair of complex poles. Notesame as that found in the OCP ndjf=1.12 [22]. It is
that the contribution from this pair of poles approximatesequivalent to that found in studies of charge correlations in
accurately the fulh(r) for A\r>0.2. the restricted primitive modelRPM) of binary ionic fluids
In Fig. 3 we display the leading-order poles calculated 24] and in screened versions of the RARb]. Kirkwood
along the isothernT"=1. At low densities the pole dominat- [26] was the first to describe the mechanism, so the line in
ing the decay oh(r) is purely imaginary. However, as the the phase diagram at which crossover occurs could be termed
density is increased, this pole moves up the imaginary axighe Kirkwood line following earlier terminologj22,24,25.
and at a densitpA3=0.47 it meets a secondescendinp In Fig. 1 we display the location of the crossoviirk-
purely imaginary pole. This second pole could only be deterwood) line in the phase diagram. This lifeee insetwas
mined once it had descended into the region of convergencéetermined by finding the density at which the imaginary
These poles coalesce and form a conjugate pair of complepoles coalesce for a series of isotherms, i.e., fiXedBy
poles which then move away from the imaginary axis as theonverting from the variable\=2,T") to («,I’) the cross-
density is increased further. This coalescence of two purelpver line shown in the main figure was obtained. We empha-
imaginary poles to form a pair of complex poles as onesize that this line lies far below the fluid-solid transition line,
moves along a path of increasing density in the phase dieas might have been expected from the observation that in the
gram results in a crossover in the asymptotic decaji(of ~ OCP freezing is known to occur fdt=172, whereas cross-
from monotonic to damped oscillatory. The mechanism ofover from monotonic to oscillatory decay of correlations oc-
poles coalescing and moving off the imaginary axis is thecurs nearl’y=1.12. For the values of considered here, O
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FIG. 3. The leading-order polesmallest imaginary partgg)
along the isotherniT" =1 for increasingoA 3. Only poles with posi-
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=< k=5, crossover occurs fdr in the range EI'<5, i.e,,

the coupling parameter is rather weak and we expect the
HNC to perform rather well; see also Figa2 for the com-
parison with MC results. Of course, one could attempt to
improve upon the HNC by incorporating an approximate
bridge functionB(r), along the lines of Ref§17,18. How-
ever, we do not expect significant changes in the location of
the crossover line; the poles should not be sensitive to details
of the particular closurg22]. One could also attempt to ex-
tract the poles and determine the crossover line using accu-
rate simulation data fog(r) following the method applied in
Ref.[27] for a truncated Lennard-Jones fluid.

In summary, we have shown that the form of the
asymptotic decay of the total correlation functibr) in a
Yukawa fluid crosses over from monotonic at small coupling
parameted” to damped oscillatory at larger values via the
same mechanism as in the OCP. We find that leading-order
asymptotics provide as accurate a description of pair corre-
lations at intermediate range in the Yukawa fluid as they do

tive a; are shown; complex poles occur in conjugate pairs. At lowfor other model fluid§22-25,27. This observation might

densities the leading order pol&) is purely imaginary. As the
density is increased a second purely imaginary gelg descends
and, at a densitpA3=0.47, the two purely imaginary poles coa-

lesce to form a pair of complex polés]). At this (Kirkwood) point

prove useful in further applications of the Yukawa model to
dusty plasmas.
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